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Solution Problem 1
Setting x1 = x, x2 = y, x3 = ẋ and x4 = ẏ, the system can be written

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = α cos(u(t))

ẋ4(t) = α sin(u(t))

We want to minimize the Mayer-Lagrange cost
∫ tf
0 1dt+g(x(tf )) There is no

constraint on the control so we can apply the weak Pontryagin’s Maximum
principle. If u is optimal on [0, tf ], there exists a continuous function p :
[0, tf ] → R4 \ {0} and a real number p0 ≤ 0 such that the pair (p(.), p0) is
non trivial and, almost everywhere on [0, tf ], we have

ẋ(t) =
∂H

∂p
(x(t), p(t), u(t)), ṗ(t) = −∂H

∂x
(x(t), p(t), u(t))

and
∂H

∂u
(x(t), p(t), u(t)) = 0

where

H(x, p, u) = p0 + p1x3 + p2x4 + α
(
p3 cos(u) + p4 sin(u)

)
.

Therefore, ṗ1 = ṗ2 = 0 so the functions p1 and p2 are constant on [0, tf ].
Moreover, ṗ3 = p1 and ṗ4 = p2 so p3(t) = p1t+p3(0) and p4(t) = p2t+p4(0)
on [0, tf ]. Since ∂H

∂u (x, p, u) = α
(
− p3 sin(u) + p4 cos(u)

)
, we find

tan(u) =
p4
p3

=
p2t+ p4(0)

p3t+ p3(0)
.

Solution Problem 2
There is no constraint on the control so the weak Pontryagin’s Maximum
principle applies. The Hamiltonian function of the problem is

H(x, p, u) = p0|u|2 +

m∑
i=1

ui〈p, Fi(x)〉.
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From the condition ∂H
∂u (x, p, u) = 0, we get 2p0ui + 〈p, Fi(x)〉 = 0, for all

1 ≤ i ≤ m. We consider the normal case p0 < 0 so, by homogeneity, we can
set p0 = −1

2 . Thus, we get ui = 〈p, Fi(x)〉, for all 0 ≤ i ≤ m. Denoting
Hi(x, p) = 〈p, Fi(x)〉 and plugging in H, we find that the extremal of the
problem are the solutions to the true Hamiltonian system

ẋ(t) =
∂Hr

∂p
(x(t), p(t)), ṗ(t) = −∂Hr

∂x
(x(t), p(t))

where Hr(x, p) = H0(x, p) + 1
2

∑m
i=0H

2
i (x, p).

Solution Problem 3

1. Reparametrizing, the L2-cost that we want to minimize is∫ lf

0
|u|2 dl

ω(l, x)
.

Since there is no constraint on the control and we consider the normal
case, the weak maximum princile applies. Setting p0 = −1

2 and using
a similar reasoning as in the solution of the problem 2, we show that
the optimal control is given by

u(l, z) = ω(l, x)(H1, . . . ,Hm)(l, z)

and that z is an integral curve of the Hamiltonian

Hn(l, z) =
ω(l, x)

2

m∑
i=1

H2
i (l, z).

2. Since Hn(l, x, ·) is quadratic in the adjoint state p, i.e Hn(l, x, αp) =
α2Hn(l, x, p), we get

dx̃

ds
=
∂Hn

∂p
(
s

ε
, x̃, p̃),

dp̃

ds
= −∂Hn

∂x
(
s

ε
, x̃, p̃).

3. We can assume that ω(l, x) = 1. Calculating, we find that

Hn(l, x, p) =
p2

2
cos2(l)

Therefore, the function p is constant.The averaged Hamiltonian is
given by

H(x, p) =
1

2π

∫ 2π

0
Hn(l, z)dl

=
p2

4π

∫ 2π

0
cos2(l)dl

=
p2

4
.
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Integrating, we find that

dx

dl
=
∂H

∂p
(l, x, p) =

p

2

so
x(l) =

p

2
l + x(0).

On the other hand, substituting l by s
ε in the expression of Hn, we get

dx̃

ds
= p̃ cos2

(s
ε

)
,
dp̃

ds
= 0.

Integrating, we find that p̃ is constant and

x̃(s) = p̃

∫
cos2

(s
ε

)
ds =

p̃

2

(
s+

ε

2
sin
(2s

ε

))
+ x̃(0).

The function sin being bounded on R, it is clear that, for given initial
conditions, the pair (x̃, p̃) converges uniformly on [0, 1] towards the
pair (x, p).
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